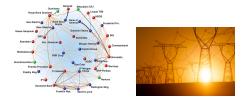
Centralities, perturbations, resilience in network models.

Fabio Fagnani, DISMA Department of Mathematical Sciences Politecnico di Torino

Kick off meeting Project of Excellence

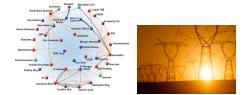
 Designed to work under 'normal' operative conditions.

- Designed to work under 'normal' operative conditions.
- Local failures, exhogeneous events.



the set of the set of

- Designed to work under 'normal' operative conditions.
- Local failures, exhogeneous events.
- Systemic risk: spreading and amplification of the perturbation. The domino effect

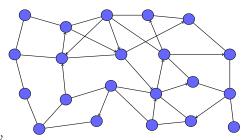


- Designed to work under 'normal' operative conditions.
- Local failures, exhogeneous events.
- Systemic risk: spreading and amplification of the perturbation. The domino effect
- Resilience: the capacity of a system to absorb the effect of a perturbation.

...and of social networks

The general picture

 $\mathcal{G} = \left(\mathcal{V}, \mathcal{E} \right)$ graph



An 'object' attached to \mathcal{G} :

- A static vector $\pi \in \mathbb{R}^{\mathcal{V}}$
- a dynamical system $\pi(t)$.

The general picture

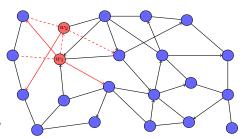
 $\mathcal{G} = \left(\mathcal{V}, \mathcal{E}\right)$ graph

An 'object' attached to \mathcal{G} :

- A static vector $\pi \in \mathbb{R}^{\mathcal{V}}$
- a dynamical system $\pi(t)$.

Study the effect on the 'object' of perturbations on \mathcal{G} :

- ► The effect of a (local) rewiring. Optimization issues.
- Resilience to small/local perturbation.
- The large scale limit $n = |\mathcal{V}| \to +\infty$.



What is classical

- The effect of perturbations on graph connectivity.
- Results for families of random graphs.
- Percolation.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ strongly connected graph, d_i out-degree of node i,

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ strongly connected graph, d_i out-degree of node i,

 π Bonacich centrality:

$$\pi_i = \sum_{j \to i} \frac{1}{d_j} \pi_j$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ strongly connected graph, d_i out-degree of node i,

 π Bonacich centrality:

$$\pi_i = \sum_{j o i} rac{1}{d_j} \pi_j$$

W adjacency matrix of \mathcal{G} , $P_{ij} = \frac{1}{d_i}W_{ij}$ stochastic matrix

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ strongly connected graph, d_i out-degree of node i,

 π Bonacich centrality:

$$\pi_i = \sum_{j o i} rac{1}{d_j} \pi_j$$

W adjacency matrix of \mathcal{G} , $P_{ij} = \frac{1}{d_i}W_{ij}$ stochastic matrix

$$\pi = P'\pi, \quad \pi' \mathbb{1} = \sum_i \pi_i = 1$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ strongly connected graph, d_i out-degree of node i,

 π Bonacich centrality:

$$\pi_i = \sum_{j o i} rac{1}{d_j} \pi_j$$

W adjacency matrix of \mathcal{G} , $P_{ij} = \frac{1}{d_i}W_{ij}$ stochastic matrix

$$\pi = P'\pi, \quad \pi' \mathbb{1} = \sum_i \pi_i = 1$$

 π exists and is unique (Perron-Frobenius), invariant probability

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ strongly connected graph, d_i out-degree of node i,

 π Bonacich centrality:

$$\pi_i = \sum_{j o i} rac{1}{d_j} \pi_j$$

W adjacency matrix of \mathcal{G} , $P_{ij} = \frac{1}{d_i}W_{ij}$ stochastic matrix

$$\pi = P'\pi, \quad \pi' \mathbb{1} = \sum_i \pi_i = 1$$

 π exists and is unique (Perron-Frobenius), invariant probability

Generalization: any weight matrix W.

The computation of π

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 undirected $\Rightarrow P'd = d \Rightarrow \pi_i = rac{d_i}{|\mathcal{E}|}$

The computation of $\boldsymbol{\pi}$

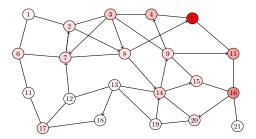
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 undirected $\Rightarrow \mathcal{P}' d = d \Rightarrow \pi_i = rac{d_i}{|\mathcal{E}|}$

For general directed graphs, there are not shortways to compute π .

The computation of $\boldsymbol{\pi}$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 undirected $\Rightarrow \mathcal{P}' d = d \Rightarrow \pi_i = rac{d_i}{|\mathcal{E}|}$

For general directed graphs, there are not shortways to compute π .



Two dynamical systems connected to P:

- $x_i(t+1) = \sum_j P_{ij}x_j(t)$ Averaging dynamics
- $y_j(t+1) = \sum_j P_{ij}y_i(t)$ Flow dynamics

Two dynamical systems connected to P:

- $x_i(t+1) = \sum_j P_{ij}x_j(t)$ Averaging dynamics
- $y_j(t+1) = \sum_j P_{ij}y_i(t)$ Flow dynamics

$$\blacktriangleright \lim_{t \to +\infty} P^t = \mathbb{1}\pi^t$$

Two dynamical systems connected to P:

- $x_i(t+1) = \sum_j P_{ij}x_j(t)$ Averaging dynamics
- $y_j(t+1) = \sum_j P_{ij}y_i(t)$ Flow dynamics
- $\blacktriangleright \lim_{t \to +\infty} P^t = \mathbb{1}\pi'$
- ► $\lim_{t \to +\infty} x(t) = \lim_{t \to +\infty} P^t x(0) = \mathbb{1}\pi' x(0)$ CONSENSUS Applications: De Groot learning model, load balancing, distributed inferential algorithms.

Two dynamical systems connected to P:

- $x_i(t+1) = \sum_j P_{ij}x_j(t)$ Averaging dynamics
- $y_j(t+1) = \sum_j P_{ij}y_i(t)$ Flow dynamics
- $\blacktriangleright \lim_{t \to +\infty} P^t = \mathbb{1}\pi'$
- ► $\lim_{t \to +\infty} x(t) = \lim_{t \to +\infty} P^t x(0) = \mathbb{1}\pi' x(0)$ CONSENSUS Applications: De Groot learning model, load balancing, distributed inferential algorithms.

$$\lim_{t \to +\infty} y(t) = \lim_{t \to +\infty} P'^t y(0) = \pi(\mathbb{1}' y(0))$$

Some fundamental problems on π

 $\blacktriangleright~\pi$ plays a crucial role in many network applications

Some fundamental problems on π

- π plays a crucial role in many network applications
- π can be analytically computed in very special cases

Some fundamental problems on π

- π plays a crucial role in many network applications
- π can be analytically computed in very special cases

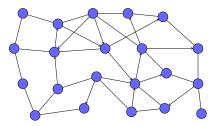
Some key issues:

- ▶ Behavior in large scale graphs $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $n = |\mathcal{V}| \rightarrow +\infty$
 - infer properties of π without explicit computation $(||\pi||_{\infty} \rightarrow 0)$
- Network engineering problems:
 - shaping π by local rewiring
 - centrality optimization
- Fundamental limitations to the effect of local perturbations. Resilience properties.

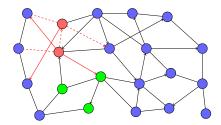
A general optimization problem

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \to P$

 $\pi = P'\pi$ centrality



$$ilde{\mathcal{G}}=(\mathcal{V}, ilde{\mathcal{E}}) o ilde{P}$$
 $ilde{\pi}= ilde{P}' ilde{\pi}$ perturbed centrali



ty

A deeper analysis on the centrality vector π

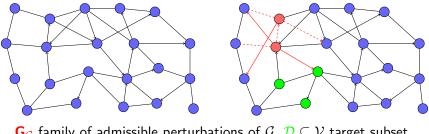
A general optimization problem

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \to P$

 $\pi = P'\pi$ centrality

 $\tilde{\mathcal{G}} = (\mathcal{V}, \tilde{\mathcal{E}}) \to \tilde{P}$

 $\tilde{\pi} = \tilde{P}' \tilde{\pi}$ perturbed centrality



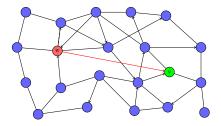
 $G_{\mathcal{G}}$ family of admissible perturbations of \mathcal{G} , $\mathcal{D} \subseteq \mathcal{V}$ target subset.

Problem: argmax $\tilde{\pi}(\mathcal{D})$ $\tilde{\mathcal{G}} \in \mathbf{G}_{\mathcal{G}}$

Centrality and average dynamics

A deeper analysis on the centrality vector π

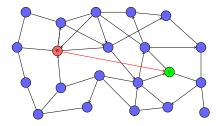
The effect of adding an edge



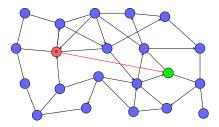
Centrality and average dynamics

A deeper analysis on the centrality vector π

The effect of adding an edge



The effect of adding an edge



- $\tilde{\pi}_{v} > \pi_{v}$
- $\underset{v \in \mathcal{V}}{\operatorname{argmax}} \widetilde{\pi}_w = \underset{v:(v,w) \in \mathcal{E}}{\operatorname{argmax}} Z_{vw}$

•
$$Z_{ij} := \sum_{t=0}^{+\infty} [P_{ij}^t - \pi_j]$$

Fundamental matrix

Fundamental limitations

P and \tilde{P} irreducible stochastic matrices on \mathcal{V}

• differing in a subset $\mathcal{W} \subseteq \mathcal{V}$ of rows.

•
$$P'\pi = \pi$$
, $\tilde{P}'\tilde{\pi} = \tilde{\pi}$

Fundamental limitations

P and \tilde{P} irreducible stochastic matrices on \mathcal{V}

• differing in a subset $\mathcal{W} \subseteq \mathcal{V}$ of rows.

•
$$P'\pi = \pi$$
, $\tilde{P}'\tilde{\pi} = \tilde{\pi}$

The result we are looking for:

Small perturbation in a large network has a small effect: $|W| << n = |V| \Rightarrow \pi - \tilde{\pi} \to 0$

Our problem looks classical: estimate how the perturbation on a matrix affects a given eigenvector.

Our problem looks classical: estimate how the perturbation on a matrix affects a given eigenvector.

The typical result available in the literature:

$$||\tilde{\pi} - \pi||_q \leq k(P)||\tilde{P} - P||_p$$

Our problem looks classical: estimate how the perturbation on a matrix affects a given eigenvector.

The typical result available in the literature:

$$||\tilde{\pi} - \pi||_q \leq k(P)||\tilde{P} - P||_p$$

- K(P) a constant typically blowing up for $n \to +\infty$.
- A. Mitrophanov (2003): $q = 1, p = \infty, K(P) = \frac{e\tau_{mix}(P)}{2}$

Our problem looks classical: estimate how the perturbation on a matrix affects a given eigenvector.

The typical result available in the literature:

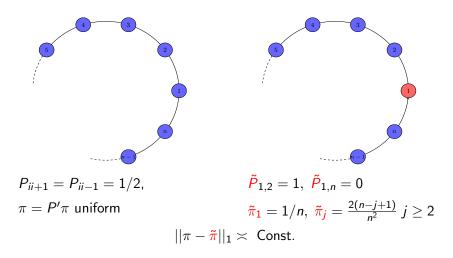
$$||\tilde{\pi} - \pi||_q \leq k(P)||\tilde{P} - P||_p$$

- K(P) a constant typically blowing up for $n \to +\infty$.
- A. Mitrophanov (2003): $q = 1, p = \infty, K(P) = \frac{e\tau_{mix}(P)}{2}$
- ||P̃ − P||_p ≥ max{|P̃_{ij} − P_{ij}|} bounded away from 0 independently on the size n.

Centrality and average dynamics

Fundamental limitations

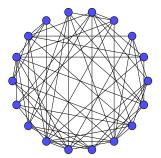
Example 1



Centrality and average dynamics 000 000 Fundamental limitations

Example 2

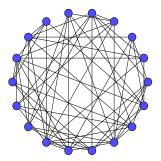
G = ER(n, p) Erdos-Renyi random graph with *n* nodes.



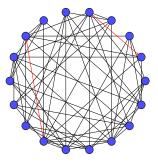
Centrality and average dynamics 000 000 Fundamental limitations

Example 2

 $\mathcal{G} = ER(n, p)$ Erdos-Renyi random graph with *n* nodes.



$\tilde{\mathcal{G}}$ is obtained from \mathcal{G} erasing two edges

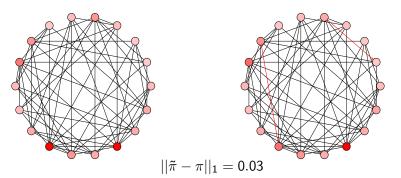


Centrality and average dynamics 000 0000 Fundamental limitations

Example 2

G = ER(n, p) Erdos-Renyi random graph with *n* nodes.

 $\tilde{\mathcal{G}}$ is obtained from \mathcal{G} erasing two edges

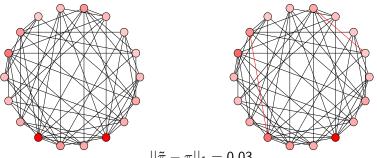


Centrality and average dynamics 000 0000 Fundamental limitations

Example 2

G = ER(n, p) Erdos-Renyi random graph with *n* nodes.

$\tilde{\mathcal{G}}$ is obtained from \mathcal{G} erasing two edges



 $||\tilde{\pi} - \pi||_1 = 0.03$

Well connected graphs \Rightarrow Fast mixing \Rightarrow Resilience

 ${\mathcal G}$ web graph.

Page-rank centrality: $\pi_i^{pr} = \alpha \mu_i + (1 - \alpha) \sum_i P_{ji} \pi_j^{pr}$

 μ_i intrinsic centrality of node i

 ${\mathcal G}$ web graph.

Page-rank centrality: $\pi_i^{pr} = \alpha \mu_i + (1 - \alpha) \sum_i P_{ji} \pi_j^{pr}$

 μ_i intrinsic centrality of node i

$$Q = (1 - \alpha)P + \alpha \mathbb{1}\mu'. \ \pi^{pr} = Q'\pi^{pr}.$$

 ${\mathcal G}$ web graph.

Page-rank centrality: $\pi_i^{pr} = \alpha \mu_i + (1 - \alpha) \sum_i P_{ji} \pi_j^{pr}$

 μ_i intrinsic centrality of node i

$$Q = (1 - \alpha)P + \alpha \mathbb{1}\mu'. \ \pi^{pr} = Q'\pi^{pr}$$

 $ilde{P}$ perturbation of P on $\mathcal{W}
ightarrow ilde{\pi}^{
m \it pr}$

 ${\mathcal G}$ web graph.

Page-rank centrality: $\pi_i^{pr} = \alpha \mu_i + (1 - \alpha) \sum_j P_{ji} \pi_j^{pr}$

 μ_i intrinsic centrality of node i

$$Q = (1 - \alpha)P + \alpha \mathbb{1}\mu'. \ \pi^{pr} = Q'\pi^{pr}$$

 $ilde{P}$ perturbation of P on $\mathcal{W} o ilde{\pi}^{
m
hor}$

$$||\tilde{\pi}^{pr} - \pi^{pr}||_1 \leq \frac{8}{\log(1-\alpha)}\pi^{pr}(\mathcal{W})$$

Any modification of the hyperlinks from a set W of webpages, generates a perturbation of the page-rank centrality whose 1-norm is bounded by the original page-rank centrality of W.

Production network

G graph of production interactions. P_{ij} fraction of the goods used by firm *i* in its production coming from firm *j*.

Profits: $\pi_i^{pr} = \alpha \mu_i + (1 - \alpha) \sum_i P_{ji} \pi_j^{pr}$

Perturbations: price distortions, changes in the production topology, technological shifts.

Wrap up

- The effect of network perturbations on centrality measures.
- Underlying dynamics are linear (averaging).

Wrap up

- The effect of network perturbations on centrality measures.
- Underlying dynamics are linear (averaging).

Future directions: the effect of perturbations on more complex systems.

- flow dynamics in infrastructure networks;
- game theoretic models in financial and economic networks;
- opinion formation and evolution in social networks.