
Centrality and average dynamics

Centralities, perturbations, resilience in network
models.

Fabio Fagnani,
DISMA Department of Mathematical Sciences

Politecnico di Torino

Kick off meeting Project of Excellence

Fabio Fagnani, DISMA Department of Mathematical Sciences Politecnico di Torino Kick off meeting Project of Excellence

Centralities, perturbations, resilience in network models.



Centrality and average dynamics

The behavior of complex infrastructures

I Designed to work under
’normal’ operative
conditions.

I Local failures, exhogeneous
events.

I Systemic risk: spreading
and amplification of the
perturbation. The domino
effect

I Resilience: the capacity of

a system to absorb the

effect of a perturbation.
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...and of social networks
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Centrality and average dynamics

The general picture

G = (V, E) graph

1

An ’object’ attached to G:
I A static vector π ∈ RV
I a dynamical system π(t).

Study the effect on the ’object’ of perturbations on G:

I The effect of a (local) rewiring. Optimization issues.
I Resilience to small/local perturbation.
I The large scale limit n = |V| → +∞.
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Centrality and average dynamics

What is classical

I The effect of perturbations on graph connectivity.

I Results for families of random graphs.

I Percolation.
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Centrality and average dynamics

An example of ongoing research: Bonacich centrality

G = (V, E) strongly connected graph, di out-degree of node i ,

π Bonacich centrality:

πi =
∑
j→i

1

dj
πj

W adjacency matrix of G, Pij = 1
di
Wij stochastic matrix

π = P ′π, π′1 =
∑
i

πi = 1

π exists and is unique (Perron-Frobenius), invariant probability

Generalization: any weight matrix W .
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Centrality and average dynamics

The computation of π
G = (V, E) undirected ⇒ P ′d = d ⇒ πi = di

|E|

For general directed graphs, there are not shortways to compute π.
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Centrality and average dynamics

The dynamics beyond π

Two dynamical systems connected to P:

I xi (t + 1) =
∑

j Pijxj(t) Averaging dynamics

I yj(t + 1) =
∑

j Pijyi (t) Flow dynamics

I lim
t→+∞

Pt = 1π′

I lim
t→+∞

x(t) = lim
t→+∞

Ptx(0) = 1π′x(0) CONSENSUS

Applications: De Groot learning model, load balancing, distributed

inferential algorithms.

I lim
t→+∞

y(t) = lim
t→+∞

P
′ty(0) = π(1′y(0))
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Centrality and average dynamics

A deeper analysis on the centrality vector π

Some fundamental problems on π

I π plays a crucial role in many network applications

I π can be analytically computed in very special cases

Some key issues:

I Behavior in large scale graphs G = (V, E), n = |V| → +∞
I infer properties of π without explicit computation (||π||∞ → 0)

I Network engineering problems:
I shaping π by local rewiring
I centrality optimization

I Fundamental limitations to the effect of local perturbations.
Resilience properties.
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Centrality and average dynamics

A deeper analysis on the centrality vector π

A general optimization problem

G = (V, E)→ P

π = P ′π centrality

1

G̃ = (V, Ẽ)→ P̃

π̃ = P̃ ′π̃ perturbed centrality

1

GG family of admissible perturbations of G, D ⊆ V target subset.

Problem: argmax
G̃∈GG

π̃(D)
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Centrality and average dynamics

A deeper analysis on the centrality vector π

The effect of adding an edge

v

w

1

I π̃v > πv

I argmax
v∈V

π̃w = argmax
v :(v ,w)∈E

Zvw

I Zij :=
+∞∑
t=0

[Pt
ij − πj ]

Fundamental matrix
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Centrality and average dynamics

Fundamental limitations

Fundamental limitations

P and P̃ irreducible stochastic matrices on V
I differing in a subset W ⊆ V of rows.

I P ′π = π, P̃ ′π̃ = π̃

The result we are looking for:

Small perturbation in a large network has a small effect:

|W| << n = |V| ⇒ π − π̃ → 0
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Centrality and average dynamics

Fundamental limitations

Why is this problem not classical?

Our problem looks classical: estimate how the perturbation on a
matrix affects a given eigenvector.

The typical result available in the literature:

||π̃ − π||q ≤ k(P)||P̃ − P||p

I K (P) a constant typically blowing up for n→ +∞.

I A. Mitrophanov (2003): q = 1, p =∞, K (P) = eτmix (P)
2

I ||P̃ − P||p ≥ max{|P̃ij − Pij |} bounded away from 0
independently on the size n.
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Centrality and average dynamics

Fundamental limitations

Example 1

1

2

34

5

n

n− 1

1

Pii+1 = Pii−1 = 1/2,

π = P ′π uniform

2

34

5

1

n

n− 1

1

P̃1,2 = 1, P̃1,n = 0

π̃1 = 1/n, π̃j = 2(n−j+1)
n2 j ≥ 2

||π − π̃||1 � Const.
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Centrality and average dynamics

Fundamental limitations

Example 2
G = ER(n, p) Erdos-Renyi
random graph with n nodes.

1

G̃ is obtained from G erasing two
edges

1
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Centrality and average dynamics

Fundamental limitations

Example 2
G = ER(n, p) Erdos-Renyi
random graph with n nodes.

1

G̃ is obtained from G erasing two
edges

1

||π̃ − π||1 = 0.03

Well connected graphs ⇒ Fast mixing ⇒ Resilience
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Centrality and average dynamics

Fundamental limitations

Page rank centrality
G web graph.

Page-rank centrality: πpri = αµi + (1− α)
∑
j
Pjiπprj

µi intrinsic centrality of node i

Q = (1− α)P + α1µ′. πpr = Q ′πpr .

P̃ perturbation of P on W → π̃pr

||π̃pr − πpr ||1 ≤
8

log(1− α)
πpr (W)

Any modification of the hyperlinks from a set W of webpages, generates

a perturbation of the page-rank centrality whose 1-norm is bounded by

the original page-rank centrality of W.
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Centrality and average dynamics

Fundamental limitations

Production network

G graph of production interactions. Pij fraction of the goods used
by firm i in its production coming from firm j .

Profits: πpri = αµi + (1− α)
∑
j
Pjiπprj

Perturbations: price distortions, changes in the production
topology, technological shifts.
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Centrality and average dynamics

Fundamental limitations

Wrap up

I The effect of network perturbations on centrality measures.

I Underlying dynamics are linear (averaging).

Future directions: the effect of perturbations on more complex
systems.

I flow dynamics in infrastructure networks;

I game theoretic models in financial and economic networks;

I opinion formation and evolution in social networks.
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